câu hỏi |
câu trả lời |
Suppose we want to arrange the n numbers stored in an array such that all negative values occur before all positive ones. The minimum number of exchanges required in the worst case is: bắt đầu học
|
|
|
|
|
The time complexity of linear search is given by: bắt đầu học
|
|
|
|
|
a = 0 N=1000 for i in range(0, N,1): for j in range(N, 0,-1): a = a + i + j; print(a) The running time is: bắt đầu học
|
|
|
|
|
The complexity of recursive Fibonacci series is bắt đầu học
|
|
|
|
|
N=5 a = 0 i = N while (i > 0): a = a + i; i = i/2; The running time is: bắt đầu học
|
|
|
|
|
Consider the following function: T(n) = n if n ≤ 3 T(n) = T(n-1) + T(n-2) - T(n-3) otherwise The running time is: bắt đầu học
|
|
|
|
|
The time complexity of an algorithm T(n), where n is the input size, is given by T(n) = T(n - 1) + 1/n if n > 1 The order of this algorithm is bắt đầu học
|
|
|
|
|
Which of the following best describes the useful criterion for comparing the efficiency of algorithms? bắt đầu học
|
|
|
|
|
Which of the following is not O(n2)? bắt đầu học
|
|
|
|
|
Suppose T(n) = 2T(n/2) + n, T(0) = T(1) = 1 Which one of the following is false bắt đầu học
|
|
|
|
|
The following statement is valid. log(n!) = \theta (n log n). bắt đầu học
|
|
|
|
|
To verify whether a function grows faster or slower than the other function, we have some asymptotic or mathematical notations, which is_________. bắt đầu học
|
|
Big Omega Ω (f), Big Oh O (f), Big Theta θ (f)
|
|
|
An algorithm performs lesser number of operations when the size of input is small, but performs more operations when the size of input gets larger. State if the statement is True or False or Maybe. bắt đầu học
|
|
|
|
|
An algorithm that requires ........ operations to complete its task on n data elements is said to have a linear runtime. bắt đầu học
|
|
|
|
|
The complexity of adding two matrices of order m*n is bắt đầu học
|
|
|
|
|
The order of an algorithm that finds whether a given Boolean function of 'n' variables, produces a 1 is bắt đầu học
|
|
|
|
|
The concept of order (Big O) is important because bắt đầu học
|
|
|
|
|
When we say an olgorithm has a time complexity of O(n), what does it mean? bắt đầu học
|
|
The computation time taken by the algorithm is proportional to n
|
|
|
What is recurrence for worst case of QuickSort and what is the time complexity in Worst case? bắt đầu học
|
|
Recurrence is T(n) = T(n-1) + O(n) and time complexity is O(n^2)
|
|
|
Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array looking like this: 2 5 1 7 9 12 11 10 Which statement is correct? bắt đầu học
|
|
The pivot could be either the 7 or the 9.
|
|
|
Which of the following is not an in-place sorting algorithm? bắt đầu học
|
|
|
|
|
Running merge sort on an array of size n which is already sorted is bắt đầu học
|
|
|
|
|
bắt đầu học
|
|
|
|
|
Which of the following algorithm design technique is used in the quick sort algorithm? bắt đầu học
|
|
|
|
|